Que :-
8x - 3y + 2z = 20
4x + 11y - z = 33
6x + 3y + 12z = 35
Sol:-
x = 1 (20 + 3y - 2z) ......(1)
8
y = 1 (33 - 4x + z) ......(2)
11
z = 1 (35 - 6x - 3y) ......(3)
12
1st
approx.
put y = 0, z = 0 in Eq.(1)
x1
= 1 ( 20 + 0 + 0 )
8
|x1
= 2.5|
y1
= 1 ( 33 - 4(2.5) + 0)
11
|y1
= 2.091|
z1 = 1 ( 3.5 - 6(2.5) - 3(2.091)
12
|z1
= 1.144|
2nd approx.
put y1
= 2.091, z1
= 1.144 in Eq.(1)
x2 = 1 ( 20 + 3y1 - 2z1)
8
|x2 = 2.998|
y2 = 1 ( 33 - 4x2 + z1 )
11
|y2 = 2.014|
z2 = 1 ( 35 - 6x2 - 3y2 )
12
|z2 = 0.914|
3rd
approx.
x3
= 1 ( 20 + 3y2 - 2z2 )
8
x3
= 1 [ 20 + 3(2.014) - 2(0.914) ]
8
|x3
= 3.026|
y3
= 1 ( 33 - 4x3 + z2 )
11
y3
= 1 [ 33 - 4(3.028) + 0.914 ]
11
|y3
= 1.982|
z3
= 1 ( 35 - 6x3 - 3y3 )
12
|z3
= 0.908|
4th
approx.
x4 = 1 ( 20 + 3y3 - 2z3 )
8
|x4 = 3.016|
y4 = 1 ( 33 + 6x4 - z3
)
11
y4 = 1 ( 33 + 6(3.016) - 0.908 )
11
|y4 = 1.986|
z4 = 1 ( 35 - 6x4 - 3y4 )
12
z4 = 1 [ 35 - 6(3.016) - 3(1.986) ]
12
|z4 = 0.912|
5th
approx.
x5
= 1 ( 20 + 3y4 - 2z4 )
8
x5
= 1 [ 20 + 3(1.986) - 2(0.1986)]
8
|x5
= 3.016|
y5
= 1 ( 33 - 4x5 + z4 )
11
|y5
= 1.986|
z5
= 1 [ 35 - 6(2.988) - 3(2.014) ]
12
|z5
= 0.914|
Thus, in last 2 approx. value of x, y and z are matched.
No comments:
Post a Comment