Monday, April 30, 2018

Gauss Elimination Method


a11x1  +  a12x2 +  a13 x3      = b1
a21x1  +  a22x2 + a23x3        =b2
a31x1  + a32x2  + a33x3        =b3

[a11         a12         a13]   [x1]        [b1]
[a21             a22       a23]   [x2]    =  [b2]
[a31         a32         a33]   [x3]        [b3]

To  eliminate coefficient of x1 from 2nd and 3rd Row Recursive formula :-

[ Riai1 × Ri                    for [ I = 2 & 3]
        a11

[a11        a12          a13]  [x1]         [b1]
[a21        a22          a23]  [x2]    =   [b2]
[a31        a32          a33]  [x3]          [b3]

To eliminate coefficients of x2 from 3rd row
[Riai2 × R2]
       a22

Ques:-
           2x1  +  2x2  +  2x3  =  14
              x1  +  6x2   -    x3  =  13
             2x1  -   x2   +  2x3  =   5
Sol:-

To eliminate coefficient of x1 from 2nd and 3rd row.

For |i=2|
            R2a21 ×  R1
                   a11

  a21 = a211 × a11
                      2
         = 1 – 1 × 2
                 2
|a21=0|

a22= a22a21 × a12
               a11

   = 6 – 1 × 8
           2

|a22 = 2|

a23= a23 × a21  × a13
               a11

      = - 1 – 1 × 2
                2
|a23=- 2|

[2      8        2] [x1]        [14]
[0       2     -2]  [x2]   =   [13]
[2      -1      2]  [x3]        [5]

For |i = 3|

        R3a31 × R1
              a11

a31 = a31 a31 × a11
                 a11

      = 2 – 2 × 2
              2
|a31 = 0|

a32 = a32a31 × a12
                a11

       = - 1 – (-1) × 8
                   2
|a32= -9|

a33 = a33 a31 × a13
                 a11

       = 2 – 2  × 2
               2
|a33=0|

b3 = b3a31 × b1  => 5 – 2 ×14
             a11                  2 
                     
     = 5 – 14

|b3= -9|

[2       8        2]  [x1]        [14]
[0       2       -2]  [x2]   =   [ 6 ]
[0      -9        6]  [x3]        [-9]
To eliminate x2 from 3rd row.

| Ri ai2 × R2 |
          a22

for |i = 3|

       R3 a32 × R2
              a22
 a32 = a32 a32 × a22
                  a22

        = - 9 – (-9) × 2
                   2
|a32=0|

a33 = a33 a32 × a23
                 a22

      = 0 – (-9) ×(-2)
                2
|a33= - 9|

b3 = b3a32  × b2
             a22

     = - 9 – (-9) × 6
                 2

     = -9 – (-27)

|b3= 18|

[2       8        2]  [x1]       [14]
[0       2       -2]  [x2]  =   [ 6 ]
[0       0       -9]  [x3]       [18]

-       9x3 = 18
  x3 = - 18
            9
|x3= 2|

  2x2 + (2x3)  = 6
  2x2 – 2x3     = 6
    x2x3       = 3
           x2      = 3 – 2

|x2 = 1|

2x1   +   8x2   +   2x3   =   14
2x1   +  8(1)  +   2(-2)=   14
2x1   =  14 – 8 + 4
   x1  = 10
            2
|x1 = 5|

[x1 = 5   ,   x2 = 1   ,   x3 = -2 ]

No comments:

Post a Comment